HOPF BIFURCATION ANALYSIS FOR A DELAYED LESLIE-GOWER PREDATOR-PREY SYSTEM WITH DIFFUSION EFFECTS  

HOPF BIFURCATION ANALYSIS FOR A DELAYED LESLIE-GOWER PREDATOR-PREY SYSTEM WITH DIFFUSION EFFECTS

在线阅读下载全文

作  者:LIN-LIN WANG BEI-BEI ZHOU YONG-HONG FAN 

机构地区:[1]School of Mathematics and Statistics Science Ludong University, Yantai Shandong 264025, P. R. China

出  处:《International Journal of Biomathematics》2014年第1期129-144,共16页生物数学学报(英文版)

摘  要:A delayed predator-prey diffusion system with homogeneous Neumann boundary condi- tion is considered. In order to study the impact of the time delay on the stability of the model, the delay ^- is taken as the bifurcation parameter, the results show that when the time delay across some critical values, the Hopf bifurcations may occur. In particular, by using the normal form theory and the center manifold reduction for partial functional differential equations, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solution have been established. The effect of the diffusion on the bifurcated periodic solution is also considered. A numerical example is given to support the main result.

关 键 词:Hopf bifurcation time delay diffusion normal form. 

分 类 号:O175.26[理学—数学] Q141[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象