检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾立娟[1] 秦玉峰[1] 张选明[1] 史健[2] 张森[1] 齐占峰[1] 杨燕[2] 孙秀军[1]
机构地区:[1]国家海洋技术中心,天津300112 [2]天津城建大学,天津300384
出 处:《海洋技术》2014年第2期104-110,共7页Ocean Technology
基 金:海洋公益性行业科研专项资助项目(2014418023);国家高技术研究发展计划(863计划)资助项目(SS2013AA092101);青年海洋科学基金资助项目(2013424)
摘 要:文中针对一款配置4个螺旋桨且五自由度运动可控的微型缆控水下观测机器人进行了推进动力性能分析,采用流体力学方法计算了螺旋桨推力和扭矩,以及机器人的总体运动阻力和运动效率等关键动力参数。该水下机器人利用水平配置的螺旋桨推进器可实现前后移动和横向转弯,利用两个V型配置螺旋桨推进器可完成垂向、横向和横滚运动。文章首先对单个螺旋桨转速分别为3 000 rpm,4 000 rpm,5 000 rpm时进行了水动力学分析,计算了不同转速下对应的前向推力和阻力扭矩,拟合了转速-推力和转速-扭矩曲线;其次,对水下机器人整体模型在前向、横向和垂向三个方向上进行了水动力学计算,分析了机器人的整体运动阻力,拟合了机器人的速度-阻力曲线;然后,对应比较螺旋桨的转速-推力曲线和机器人的速度-阻力曲线,大致得出不同螺旋桨转速下机器人的推进速度,明确螺旋桨转速与机器人运动速度的对应关系,为螺旋桨水动力分析确定入口速度;最终,根据螺旋桨入口速度,重新计算螺旋桨水动力,绘制了转速-推力和转速-扭矩曲线,并确定机器人的推进效率,得出了螺旋桨转动和水下机器人整体运动的关键动力参数。A newly designed micro remotely operated vehicle(micro-ROV) named "HETUN" is presented in this paper, which is equipped with 4 screw propellers and is able to implement a controllable motion of 5 degrees of freedom, with its propulsive efficiency analyzed. Its key dynamic parameters are calculated through hydrodynamic methods, including the propulsive force and torque of propellers, as well as the overall motion-resistance force and motion efficiency of the micro-ROV. Two horizontally configurated propellers can be controlled to implement forward and backward movement or lateral deflection movement; and the other two propellers configurated in V-type are able to complete vertical, lateral and rolling motion. To study the propulsive efficiency of the propellers,this paper firstly conducts hydrodynamic analysis on the single propeller with different rotational speeds of 3 000 rpm, 4 000 rpm and 5 000 rpm, and calculates the forward propulsive force and drag torque corresponding to each speed, fitting the rotational velocity-propulsive force curve and rotational velocity-torque curve. Then hydrodynamic analysis of the entire model is completed in forward, lateral and vertical directions, with the overall motion-resistance force of the micro-ROV analyzed, fitting the speed-resistance force curve. The speeds of the micro-ROV under different propeller speeds are obtained through comparison of the rotational velocity-propulsive force curve and the ROV's speed-resistance force curve. The relationship between the propeller speed and ROV speed is ascertained, so as to determine the entry speed. Finally, propeller hydrodynamics were again analyzed based on the entry speed, and the rotational velocity-propulsive force curve and the rotational velocity-torque curve were drawn, before determining the propulsive efficiency of the micro-ROV and deriving the key dynamic parameters of propeller rotation and overall movement of the micro-ROV. The study leads to the final conclusion that the highest propulsive efficiency o
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222