基于文本挖掘的精子发生各阶段的相关基因/蛋白名称提取  被引量:3

Extraction of Gene/Protein Names Involved in Each Stage of Spermatogenesis Based on Literature Mining

在线阅读下载全文

作  者:朱俊[1,2] 殷建平[1] 赵志恒[1] 祝恩[1] 班荣军 

机构地区:[1]国防科学技术大学计算机学院,长沙410073 [2]西昌卫星发射中心,海南文昌571300 [3]南京大学计算机科学与技术系,南京210093

出  处:《计算机研究与发展》2014年第6期1352-1358,共7页Journal of Computer Research and Development

基  金:国家自然科学基金项目(60970034;61170287;61232016);高等学校全国优秀博士论文作者资助项目(2007B4)

摘  要:精子发生是雄性哺乳动物生命活动中一个重要的生物学过程,该过程的每一个阶段都有众多基因/蛋白参与并发挥功能.相关基因/蛋白出现异常是导致男性不育症的主要诱因,但这些基因/蛋白的信息大都分散在科研文献中,而人工从海量文献中提取这些基因/蛋白名称费时费力,因此,基于文本挖掘技术,提出了自动提取精子发生过程各个阶段中发挥作用的基因/蛋白名称的策略.首先比较了3种不同算法在不同词条数目下的分类效果,并确定用支持向量机(support vector machine,SVM)算法对相关文本按照精子发生过程的3阶段分类,然后建立适当的信息提取和筛选方法,从文献摘要中提取每个阶段中的基因/蛋白名称.最后,通过与人工提取的基因/蛋白名称进行比较验证,提取结果的正确率为71.9%,证明了提取策略的可行性.Spermatogenesis is an important bioprocess in the lifetime of male mammalians,which has deep effect on mammal's reproduction.Abnormal spermatogenesis is a major cause of male infertility,however treatments for this are limited.Characterizing the genes/proteins involved in spermatogenesis is fundamental to understand the mechanisms underlying this biological process and to develop treatments for the problems in spermatogenesis.However,most crucial information of spermatogenesis-related genes/proteins scatters in vast amount of research articles,so manually curation of these genes/proteins could be a time-consuming task.In this paper,a novel strategy is proposed to automatically extract the names of spermatogenesis-related genes/proteins,which function in different stages of spermatogenesis based on literature mining.Firstly,it compares three different algorithms performance on different terms and applys an SVM classifier trained with a manually prepared dataset to classify spermatogenesis-related texts into three classes in accordance with the three stages of spermatogenesis.Then,integrating expert knowledge and grammar rules,it recongnizes and extracts the gene/protein names of each spermatogenesis stage with high confidence.Finally,a manually curation test dataset is used to test the performance of this strategy,and the strategy gets an accuracy of 71.9%,which verifys the reliability of proposed method and proves the value of application.

关 键 词:文本挖掘 精子发生 男性不育症 文本分类 基因 蛋白名称提取 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象