基于包容性检验和神经网络的网络流量预测  被引量:1

Network Traffic Prediction Based on Encompassing Tests and Neural Network

在线阅读下载全文

作  者:陈曦[1] 

机构地区:[1]长江师范学院数学与计算机学院,重庆408100

出  处:《电视技术》2014年第11期130-133,共4页Video Engineering

摘  要:网络流量具有复杂多变特征,为了获得理想的预测效果,提出一种包容性检验和BP神经网络相融合的网络流量预测模型(ET-BPNN)。首先采用多个单一模型对网络流量进行预测,然后通过包容性检验选择最合适的基本模型,最后采用BP神经网络确定基本模型权重,建立网络流量预测模型。结果表明,ET-BPNN更加准确地刻画了网络流量变化趋势,各项评价指标均达到更优,为实现网络流量准确预测提供了更为科学的方法。Network traffic has nonlinear characteristics, a single prediction model is often difficult to achieve the ideal prediction effect, and therefore, a novel network traffic prediction model is proposed in this paper based on encompassing tests and BP neural network (ET-BPNN). Firstly, the network traffic is prediction by some single models, and then the most suitable single models are selected by encompassing tests according to the statistic test, fi- nally BP neural network is used to combine the prediction results of single models to obtain the final prediction result of network traffic. The experimental results show that, compared with the single model and traditional combination models, the proposed model can more accurately describe the change trend of network traffic and obtain better indexes, it provides a more scientific method for network traffic prediction.

关 键 词:组合预测 网络流量 神经网络 包容性检验 

分 类 号:N391[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象