检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]乐山师范学院物理与电子工程学院,四川乐山614004 [2]中国民航飞行学院航空安全保卫学院,四川广汉618307
出 处:《电视技术》2014年第11期183-186,共4页Video Engineering
基 金:国家自然科学基金项目(61079022)
摘 要:为了实现对具有不同光照、姿势和噪声的人脸进行识别并提高识别精度,设计了一种基于离散小波变换和最小二乘支持向量机的人脸识别方法。首先,采用二维离散小波变换对人脸图像进行压缩和降噪,以提取低频特征信息分量,然后采用快速独立成分分析法ICA对经过离散小波变换后的人脸低频分量进行特征提取,以进一步减少人脸特征向量维数。在获取图像特征向量的基础上,采用径向基函数作为核函数,将训练样本数据输入最小二乘支持向量机进行训练以获得最终的分类模型。在ORL数据库下采用MATLAB仿真工具进行仿真,实验结果表明,该方法能有效地实现对人脸识别,与其他方法相比具有较高的识别精度。In order to realize facial recognition with different characters such as illumination,posture and noise and improve the recognition precision, a facial recognition method based on discrete wavelet transform and least squares support vector machine is proposed. Firstly ,the discrete wavelet trans- form is used to compress the facial figure and reducing the noise to get the character information component with low frequency,and then the fast inde- pendent component analysis is used to obtain the facial character information with low frequency to reduce the dimension further. Finally, the radius basis function is used as the kernel function,and the training data is input to the least squares support vector machine to get the final recognition model. The simulation experiment is simulated in ORL database with MATLAB tool, and the result shows the method in this paper can realize the facial recognition, and it has big recognition precision compared with the other methods.
关 键 词:人脸识别 离散小波变换 独立成分分析 核函数 支持向量机
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.50.172