基于模拟退火离散粒子群算法的测试点优化  被引量:7

Optimization for test selection based on simulated annealing binary particle swarm optimization algorithm

在线阅读下载全文

作  者:焦晓璇 景博[1] 黄以锋[1] 邓森[1] 窦雯 

机构地区:[1]空军工程大学航空航天工程学院,西安710038 [2]空军驻成都地区军事代表局,成都610000

出  处:《计算机应用》2014年第6期1649-1652,共4页journal of Computer Applications

基  金:国家自然科学基金资助项目(51201182);航空科学基金资助项目(20101996012)

摘  要:针对复杂系统的测试点优化问题,提出一种基于模拟退火离散粒子群(SA-BPSO)算法的测试点优化算法。该算法利用模拟退火算法的概率突跳能力,克服了基本粒子群算法易陷入局部最优解的缺陷。阐述了该算法在系统测试点优化应用中的流程及关键步骤,并且理论分析了该算法的复杂度。仿真结果表明,该算法在计算时间和测试费用方面都优于遗传算法,能够应用于复杂系统的测试点优化。For the problem of test selection for complex system, a test selection optimization based on Simulated Annealing Binary Panicle Swarm Optimization (SA-BPSO) algorithm was adopted. The probabilistic jumping ability of simulated annealing algorithm was used to overcome the deficiencies of the panicle swarm being easily fall into local optimal solution. The process and key steps of the algorithm for test selection in complex system were introduced, and the complexity of the algorithm was analyzed. The simulation results show that the algorithm has better performance in running time and testing cost compared to genetic algorithm, thus the algorithm can be used to optimize test points of complex system.

关 键 词:测试点优化 模拟退火 粒子群算法 遗传算法 测试性 

分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象