检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏明彬[1]
出 处:《成都师范学院学报》2014年第5期108-112,共5页Journal of Chengdu Normal University
摘 要:极限理论是微积分的基础。只有深刻理解并熟练掌握极限理论才能够理解微积分的本质。至今,极限教学之难,仍然是一个大问题。考察微积分的历史,可以发现,极限之难,主要是如何描述极限。因此,在极限理论的教学中,要强调如何描述极限。此外,还归纳总结了证明极限的几种典型方法。The theory of limit is the basis of calculus. The essence of calculus can be understood only by understanding profoundly and skilfuUy grasping the theory of limit. Up to now, difficuhies to teach and study limit have been still a big problem. It is found out that the difficulty of limit is mainly how to describe it through inspecting the history of calculus. Therefore, how to describe limit should be emphasized in teaching theory of hmit. In addtion, several typical methods to prove limit are summarized.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173