基于稀疏性非负矩阵分解的偏振图像快速融合方法  

Polarimetric Image Fast Fusion Method Via Sparse Non-Negative Matrix Factorization

在线阅读下载全文

作  者:曾献芳[1] 徐国明[2] 易维宁[3] 黄红莲[3] 尹成亮 

机构地区:[1]安徽水利水电职业技术学院,安徽合肥230601 [2]解放军陆军军官学院,安徽合肥230031 [3]中国科学院安徽光学精密机械研究所中国科学院通用光学定标与表征技术重点实验室,安徽合肥230031

出  处:《大气与环境光学学报》2014年第3期229-236,共8页Journal of Atmospheric and Environmental Optics

基  金:安徽省自然科学基金项目(1208085QF126)资助

摘  要:针对基于非负矩阵分解(non-negative matrix factorization,NMF)的偏振图像融合方法效率低的不足,提出一种基于稀疏性NMF的偏振图像快速融合方法。首先,以偏振信息解析得到的各偏振参量图像构造原始数据集,其次,对NMF增加稀疏性约束,利用稀疏表示下的在线字典学习算法进行快速分解,然后对分解得到的三幅特征基图像按清晰度和方差进行排序,将排序后的特征基图像经直方图匹配及HSI颜色映射后,变换到RGB颜色空间,得到融合图像.与基于NMF的方法相比,运行时间提高约120倍,达到约1.5 s完成一次融合过程。实验结果验证了该方法在改善融合效果的同时,运行效率明显提高。To improve the efficiency of the polarimetric image fusion methods via NMF, a fast fusion method based on sparse NMF was proposed. Firstly, the polarization parameter images were acquired by computing from intensity images of different polarization angle. The original data set was organized by the polarization parameter images. Secondly, the sparse constraint was added to NMF and the cost function was solved by online dictionary learning algorithm of sparse representation. Then, the data set was factorized by sparse NMF and three feature basis images sorted by definition and variance were obtained. Next, after histogram matching, these three sorted feature basis images were mapped into three color channels of HSI color model. Finally, the fused image was achieved by transforming the image from HSI to RGB color model. Compared with the method based on NMF, the running time is improved with 120 times. One fusing process can be finished in 1.5 s. Experiment results show that the proposed method not only has good fusion results but also enhances the running efficiency evidently.

关 键 词:图像融合 偏振图像 在线字典学习 稀疏性非负矩阵分解 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象