CONVERGENCE AND SUPERCONVERGENCE ANALYSIS OF LAGRANGE RECTANGULAR ELEMENTS WITH ANY ORDER ON ARBITRARY RECTANGULAR MESHES  被引量:1

CONVERGENCE AND SUPERCONVERGENCE ANALYSIS OF LAGRANGE RECTANGULAR ELEMENTS WITH ANY ORDER ON ARBITRARY RECTANGULAR MESHES

在线阅读下载全文

作  者:Mingxia Li Xiaofei Guan Shipeng Mao 

机构地区:[1]School of Science, China University of Geosciences (Beijing), Beijing, 100083, China [2]Department of Mathematics, Tongji University, Shanghai 200092, China [3]LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

出  处:《Journal of Computational Mathematics》2014年第2期169-182,共14页计算数学(英文)

摘  要:This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The family of Lagrange rectangular elements with all the possible shape function spaces are considered, which cover the Intermediate families, Tensor-product families and Serendipity families. It is shown that the anisotropic interpolation error estimates hold for any order Sobolev norm. We extend the convergence and superconvergence result of rectangular finite elements to arbitrary rectangular meshes in a unified way.This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The family of Lagrange rectangular elements with all the possible shape function spaces are considered, which cover the Intermediate families, Tensor-product families and Serendipity families. It is shown that the anisotropic interpolation error estimates hold for any order Sobolev norm. We extend the convergence and superconvergence result of rectangular finite elements to arbitrary rectangular meshes in a unified way.

关 键 词:Lagrange interpolation Anisotropic error bounds Arbitrary rectangular meshes Orthogonal expansion Superconvergence. 

分 类 号:O241.3[理学—计算数学] O241.6[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象