检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张保华[1] 黄文倩[2] 李江波[2] 赵春江[2] 刘成良[1] 黄丹枫[1]
机构地区:[1]上海交通大学机械系统与振动国家重点实验室,上海200240 [2]北京市农林科学院北京农业智能装备技术研究中心,北京100097
出 处:《农业机械学报》2014年第6期221-226,共6页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家自然科学基金资助项目(31301236);国家高技术研究发展计划(863计划)资助项目(2013AA100307);2012年北京市农林科学院博士后基金资助项目
摘 要:提出了一种基于亮度校正和AdaBoost的苹果缺陷与果梗-花萼在线识别方法。以富士苹果为研究对象,首先在线采集苹果的RGB图像和NIR图像,并分割NIR图像获得苹果二值掩模;其次利用亮度校正算法对R分量图像进行亮度校正,并分割校正图像获得缺陷候选区(果梗、花萼和缺陷);然后以每个候选区域为掩模,随机提取其内部7个像素的信息分别代表所在候选区的特征,将7组特征送入AdaBoost分类器进行分类、投票,并以最终投票结果确定候选区的类别。实验结果表明,该算法检测速度为3个/s,满足分选设备的实时性要求,且总体正确识别率达95.7%。An algorithm was proposed to on-line identify the defects and stem- calyx on apples based on lightness correction method and AdaBoost classifier. The 'Fuji' apples were selected as the experiment object. First, the RGB images and NIR images of apples were acquired, and NIR images were binarized to obtain the mask images. Second, the R component images were corrected by using proposed lightness correction algorithm and the defect candidate regions were obtained by binarizing the corrected images with a single threshold. Third, every candidate region was treated as a mask, and the information of random seven pixels in the candidate region were selected as the characteristics of the selected candidate region. Finally, an AdaBoost classifier was used to classify these candidate regions by voting way, and the category of candidate region was determined according to the final voting results. For the investigated 140 samples, the results with a 95.7% overall detection rate under acquisition speed of three apples per second indicated that the proposed algorithm was effective.
关 键 词:苹果缺陷 机器视觉 亮度校正 AdaBoost在线识别 果梗-花萼
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15