检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程洪[1,2] 史智兴[1] 冯娟[1] 李亚南[1] 尹辉娟[1]
机构地区:[1]河北农业大学信息科学与技术学院,保定071001 [2]中国农业大学信息与电气工程学院,北京100083
出 处:《中国粮油学报》2014年第6期22-26,共5页Journal of the Chinese Cereals and Oils Association
基 金:"十二五"农村领域国家科技计划(2011BAD16B08-3);河北农业大学理工基金(LG20110601);保定市科学研究与发展计划(13ZN010)
摘 要:为了提高玉米品种自动识别的可靠性,本文对表征品种的胚部特征参数进行了优化研究。采用区域生长法从玉米种子图像中分割出胚部区域,提取该区域的8个形状、6个颜色和6个纹理特征参数;定义了这些特征的类间和类内差异度计算公式,以便量化特征参数的有效性;结合改进的K-均值聚类算法,获得胚部形态的最优特征参数集。通过5个玉米品种各180粒的识别结果得知:玉米胚部特征参数在品种识别中作用显著,单纯基于胚部的优化特征参数集就可使其平均识别率达88%。本研究成果可为玉米品种自动识别开辟一条新思路。In the paper, a method for automatic identification corn varieties has been proposed. The method was K - means clustering algorithm combined degree of difference of characteristic based on corn kernel embryo mor- phology. It extracted the embryo region adopting region growing algorithm; extract characteristics of embryo region: eight shape features, six color features and six texture features. In order to select the most effective features of the embryo for identification of corn varieties, difference degrees of inter - class and intra - class of different feature for measure the effectiveness of features have been defined. K -means clustering algorithm with the characteristic differ- ence degree has been used to find the optimal portray embryo morphology feature subset to recognize corn varieties. Five corn varieties were selected as the research object, 180 kernels respectively. The average recognition rate was 88% after researched by K -means algorithm with the feature subset.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.170.88