检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子与信息学报》2014年第6期1327-1333,共7页Journal of Electronics & Information Technology
基 金:教育部直属高校特色项目基金(O2600005);中国药科大学理学院青年教师科研资助课题
摘 要:针对局部二值模式(LBP)和中心对称局部二值模式(CS-LBP)方法描述图像纹理特征时,阈值不能自动选取并且图像中不同子块的贡献也没有进行区分的问题,该文提出一种自适应阈值及加权的局部二值模式方法。首先,将图像进行分块,采用设定的自适应阈值提取每个子块的LBP或CS-LBP纹理直方图;然后,将各子图像的信息熵作为直方图的加权依据,对每个子块对应的直方图进行自适应加权,并将所有子块的直方图连接成最终的纹理特征;最后,通过快速计算图像均值加快了算法的计算速度。在人脸数据库上进行的实验证明,利用该文提出的方法提取纹理特征,并结合最近邻分类法可以得到较高的正确识别率。A new method called weighted Local Binary Pattern (LBP) with adaptive threshold is proposed in this paper to address the shortcomings of LBP and Center Symmetric Local Binary Pattern (CS-LBP), using unflexible threshold and non-discriminating respective sub-patches based on different textures. Firstly, the image is divided into several sub-images and LBP or CS-LBP texture histograms are extracted respectively from each sub-image based on the adaptive threshold. Then, the proposed algorithm adaptively weighted the LBP or CS-LBP histograms of sub-patches with information entropy as their basis and connected all histograms serially to create a final texture descriptor. Finally, the improved efficiency of the proposed algorithm is achieved by speeding up the computation of the average of an image. The experimental results by face databases show that a higher recognition accuracy can be obtained by employing the proposed method with nearest neighbor classification.
关 键 词:人脸识别 纹理特征 局部二值模式 自适应阈值 自适应加权
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28