检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周頔[1]
机构地区:[1]四川文理学院,四川达州635000
出 处:《计算机与现代化》2014年第6期74-78,共5页Computer and Modernization
基 金:四川省教育厅重点资助项目(14ZB0303);达州市重大科技攻关项目(2010zdzx006)
摘 要:能耗优化是一个动态优化问题,在能耗规模较大的情况下,能耗设备间与总能耗间存在一定的非线性关系,即并非每个能耗最优化能使得总的能耗最优化,因此能耗优化是一个动态非线性优化问题。对于能耗优化问题,传统的节能方法难以奏效。基于此,本文在分析目前节能方法的特点后,设计一种高效的全局优化算法——链式智能体遗传算法,可解决上述的动态非线性优化问题。为了验证本文提出的算法的优越性,将该算法用于某钢厂的电能节耗中,节耗效果明显且较稳定。实践表明,该算法具有较好的灵活性,当能耗环境和节能要求发生变化时,该算法能在不变动当前设备的前提下,动态获得较优的节能效率。Optimization of energy consumption is a dynamic optimization problem. Under the conditions of larger-scale energy consumption, there exists a nonlinear relationship between energy consumption equipment and total energy consumption, that is, total energy consumption cannot be achieved only by optimized energy consumption for every equipment. Therefore, dynamic opti- mization problem is still a nonlinear optimization problem. The traditional energy saving method is difficult to solve such a compli- cated problem of optimization of energy consumption. Based on the above-mentioned conditions, the paper analyzes the features of current energy saving methods and designs a kind of more efficient global optimization algorithms, i.e. Chain-like agent genetic algorithm, which can effectively solve the above mentioned problem of dynamic nonlinear optimization method. In order to verify the superiority of algorithm, the author applies the algorithm into the steel mill using for electrical energy saving and the effect of energy saving is obvious and stable. Also, the algorithm has good flexibility. The algorithm can dynamically obtain optimal ener- gy-saving efficiency without altering the current equipment, when energy consumption environment and energy-saving require- ments changes frequently.
分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3