Complex and p-Adic Meromorphic Functions f′P′( f ),g′P′(g) Sharing a Small Function  

Complex and p-Adic Meromorphic Functions f′P′( f ),g′P′(g) Sharing a Small Function

在线阅读下载全文

作  者:Alain Escassut Kamal Boussaf Jacqueline Ojeda 

机构地区:[1]Laboratoire de Mathematiques, UMR 6620, Universit'e Blaise Pascal,Les C'ezeaux,Aubiere 63171, France [2]Departamento de Matematica, Facultad de Ciencias Fsicasy Matematicas,Universidad de Concepcion,Concepcion, Chile

出  处:《Analysis in Theory and Applications》2014年第1期51-81,共31页分析理论与应用(英文刊)

基  金:Partially funded by the research project CONICYT (Inserción de nuevos investigadores en la academia, NO. 79090014) from the Chilean Government

摘  要:Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove results of uniqueness in value sharing prob-lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic functions in K or C or in an open disk. Let f , g be two transcendental meromorphic functions in the whole field K or in C or meromorphic functions in an open disk of K that are not quotients of bounded analytic functions. We show that if f′P′( f ) and g′P′(g) share a small function α counting multiplicity, then f=g, provided that the multiplicity order of zeros of P′satisfy certain inequalities. A breakthrough in this pa-per consists of replacing inequalities n≥k+2 or n≥k+3 used in previous papers by Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a sum of q counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function.Let K be a complete algebraically closed p-adic field of characteristic zero. We apply results in algebraic geometry and a new Nevanlinna theorem for p-adic meromorphic functions in order to prove results of uniqueness in value sharing prob-lems, both on K and on C. Let P be a polynomial of uniqueness for meromorphic functions in K or C or in an open disk. Let f , g be two transcendental meromorphic functions in the whole field K or in C or meromorphic functions in an open disk of K that are not quotients of bounded analytic functions. We show that if f′P′( f ) and g′P′(g) share a small function α counting multiplicity, then f=g, provided that the multiplicity order of zeros of P′satisfy certain inequalities. A breakthrough in this pa-per consists of replacing inequalities n≥k+2 or n≥k+3 used in previous papers by Hypothesis (G). In the p-adic context, another consists of giving a lower bound for a sum of q counting functions of zeros with (q-1) times the characteristic function of the considered meromorphic function.

关 键 词:MEROMORPHIC NEVANLINNA sharing value unicity distribution of values. 

分 类 号:O174.52[理学—数学] O187[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象