基于多元线性回归理论的道路混凝土干缩预测模型  被引量:3

Drying shrinkage prediction model for pavement concrete based on multivariate linear regression theory

在线阅读下载全文

作  者:周胜波[1] 申爱琴[1] 田丰[1] 江洲[1] 王贝[1] 万晨光[1] 

机构地区:[1]长安大学公路学院,陕西西安710064

出  处:《长安大学学报(自然科学版)》2014年第3期28-34,共7页Journal of Chang’an University(Natural Science Edition)

基  金:国家自然科学基金项目(51278059);中央高校基本科研业务费专项资金项目(2013G5210010;2013G2313001)

摘  要:为合理地选择水灰比、胶凝材料掺量、骨料用量等配合比参数,从而达到降低混凝土干缩的目的,采用设计的干燥收缩试验装置,通过改变参数水平,研究了不同因素对道路混凝土早期干缩的影响,并确定了控制干缩的主要配合比参数。通过对比分析现有干缩预测模型的局限性,基于多元线性回归理论,利用SPSS软件建立了基于原材料组成的道路混凝土早期干缩预测模型。研究结果表明:在选定的原料试验范围内,用水量和骨料体积含量是影响道路混凝土干缩率的主要因素,水泥用量次之,粗细集料体积比基本上没有影响;可为道路混凝土抗裂性配合比设计提供理论基础。In order to decrease the drying shrinkage ratio of concrete,it is essential to make reasonable choices among such parameters as water-cement ratio、binder consumption volume、the amount of coarse and fine aggregate and so on.In the present study,the influences of main factors on the earlier drying shrinkage were investigated by using the self-developed experimental drying shrinkage setup,and the main parameters for controlling drying shrinkage of concrete were determined.Through comparing and analyzing the limitations of existing models for predicting drying shrinkage of concrete,and based on multivariate linear regression theory,the prediction model for earlier drying shrinkage of pavement concrete was established based on raw material mixing proportion of concrete by applying SPSS software.The results show that such factors as water consumption volume and aggregate volume content are main influence factors on the drying shrinkage of concrete while the cement content is minor,and basically aggregate volume ratio has no influence on the drying shrinkage.This study will provide theoretical foundation for designing pavement concrete mixing proportion to resist cracking.

关 键 词:道路工程 道路混凝土 干缩模型 多元线性回归 原料组成 

分 类 号:U414.18[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象