检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州大学,广州510006 [2]华南理工大学,广州510640
出 处:《电测与仪表》2014年第10期77-81,共5页Electrical Measurement & Instrumentation
摘 要:图像边缘检测技术在电力行业的应用越来越广泛,但仍然存在些许问题限制了其在工程中的实际应用。对于复杂的现场电力设备图像,结合最优阈值灰度分割法和Canny算子等图像处理技术,提出了基于改进Canny算子检测电力设备图像。首先利用最优阈值灰度分割法得到的阈值作为Canny算子的高阈值Th;然后利用高低阈值的对应关系确定低阈值Tl,。由此可实现改进Canny自适应检测电力设备图像的目的。实验结果表明,该方法可取得较为理想的边缘检测效果,具有一定的实用性。Edge detection technology is more and more widely applied in the electric power industry. However, there are still some problems limiting the practical application in engineering. An improved Canny operator based electricity equipment image detection method has been proposed combining the optimal threshold gray segmentation and Canny edge detection technology for the complex field power equipment image. The threshold obtained by the optimal thresh- old gray segmentation will be adopted to determine the Canny high threshold Th ; and the Canny low threshold Tl will be determined based on the corresponding relation to Th, so as to improve the Canny self - adaptive electricity equip- ment image detection. Experimental results show that this method will achieve a better edge detection effect and has a certain practicality.
关 键 词:电力设备图像 最优阈值灰度分割法 改进Canny算子 边缘检测
分 类 号:TM75[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.168.194