随机摄动强跟踪粒子滤波算法  被引量:8

Study on stochastic perturbation strong tracking particle filter

在线阅读下载全文

作  者:张琪[1] 乔玉坤 孔祥玉 司小胜[1] 

机构地区:[1]第二炮兵工程大学,302教研室,西安710025 [2]武警工程大学,信息工程系,西安710078

出  处:《物理学报》2014年第11期102-110,共9页Acta Physica Sinica

基  金:国家自然科学基金(批准号:61104223,61174030,61374120)资助的课题~~

摘  要:如何解决粒子的退化问题和提高算法对突变状态的跟踪能力,是粒子滤波算法研究和应用中需要考虑的两个主要因素.传统的再采样算法虽然可以解决退化问题,但是容易导致粒子耗尽;扩展粒子滤波算法虽然可在一定程度上解决粒子耗尽问题,但其对突变状态的跟踪能力却不近人意;强跟踪粒子滤波算法可以提高对突变状态的跟踪能力,但却未能较好地改善粒子退化问题.针对上述问题,本文将随机摄动再采样方法引入强跟踪粒子滤波算法,提出了一种随机摄动强跟踪粒子滤波算法.当粒子退化问题严重时,对权值最大的粒子迭加随机摄动,用摄动粒子替换退化粒子以解决粒子退化问题,同时由于摄动粒子的加入增加了粒子集的多样性,可在一定程度上缓解粒子耗尽问题,提高算法对突变状态的跟踪能力.利用标准验证模型和分时恒定系统对所提出的算法进行了仿真验证,仿真结果证明了该算法的可行性和有效性.To solve the degeneracy phenomenon and to improve the ability for tracking the breaking states are two difficult problems in the application of particle filter. Sequential important re-sampling can reduce orilliminate degeneracy, but the sample impoverishment is a secondary result. Extended particle filter can also reduce the degeneracy, but it cannot track the breaking states. The ability to track the breaking states can be improved by a strong tracking particle filter, but the degeneracy phenomenon will not be well solved still. A stochastic perturbation strong tracking particle filter is proposed for solving the above problems, in which a stochastically perturbative re-sampling is introduced into a strong tracking particle filter. Thus a stochastic perturbation is added to the particle with maximal weight to form some new particles, and the degenerative particles are displaced by the new particles to solve the degeneracy phenomenon and so the sample impoverishment improves the diversity of the samples. The ability of the proposed algorithm to track breaking states is also improved, and the feasibility and validity of the proposed algorithm are demonstrated by the simulation results of the standard validation model and the system with constants in different periods of time.

关 键 词:粒子滤波 退化问题 随机摄动 强跟踪滤波算法 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象