基于支持向量机的高校教学水平评估模型的研究  

Research on Teaching Level Evaluation Model Based on Support Vector Machine

在线阅读下载全文

作  者:盛伟翔 王昊[2] 董晓睿[2] 谢桂华[3] SHENG Wei-xiang, WANG Hao, DONG Xiao-rui, XIE Gui-hua (1. Jiangxi Justice Police Vocational College, Nanchang 330013, China; 2. Center of Computer, Nanchang University, Nan- chang 330031, China; 3. Shandong Vocational College of Economics and Business, Weifang 261011, China)

机构地区:[1]江西司法警官职业学院,江西南昌330013 [2]南昌大学计算中心,江西南昌330031 [3]山东经贸职业学院,山东潍坊261011

出  处:《电脑知识与技术》2014年第5期3165-3168,共4页Computer Knowledge and Technology

基  金:江西省省级教改课题(jXjg-11-40-8)

摘  要:教师教学水平的评估是教育评估的核心问题之一。本研究将支持向量机多分类方法引入教学水平评估任务之中,利用支持向量机将线性模糊不可分的样本映射到高维空间使之具有线性可分特性,从本质上避开了从归纳到演绎的传统过程,简化了非线性问题的分类过程;结构风险最小化理论保证分割的全局最优化,降低期望风险。该方法充分利用支持向量机的小样本学习的高效性,实现了优秀的学习效果,减少了传统评价方法中的分歧误差和主观性因素的影响,更加符合宏观取向的评价结论。该研究成果可与信息熵、模糊数学等研究方法相结合,进一步增强数据拟合的精度,该方法对改进教师的教学水平、促进教学质量的提高具有一定的参考意义。Teaching level evaluation is an important part of educational evaluation. In this study, Support Vector Machine (SVM) has been introduced into the teaching level evaluation to avoid the traditional research process of inductive and deductive. This study simplifies the multi-classification process of nonlinear problems using high-dimensional space mapping, reduces expected risk using the structural risk minimization theory. The research method takes advantage of the efficiency on learning small samples to achieve excellent learning outcomes and reduce the influence of the traditional evaluation methods in terms of error and sub-jective factors. The research result can be combined with information entropy, fuzzy math and other research methods to further enhance the accuracy of data fitting. The research has some reference value in the related areas of promoting teaching quality and improving educational evaluation.

关 键 词:支持向量机 教学水平评估 多分类 输出编码 

分 类 号:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象