检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈国珍[1]
出 处:《计算机工程与应用》2014年第11期139-144,166,共7页Computer Engineering and Applications
摘 要:K均值算法虽被广泛应用,但其算法性能和算法稳定性严重依赖算法的初始化过程,尤其是初始聚类中心的选取。比较合理的聚类中心应该出现在数据密集的区域,基于这个假设,提出了一种依赖数据局部密度的初始化调优算法。该算法以数据的局部密度函数为依据,并在高密度区域选取初始聚类中心。与同类算法相比,该算法有如下特点:能够自主发现数据集中数据分布的局部密集度;对类别数目较多的数据表现出更好的性能;对离群点和噪声鲁棒;易于实现。K-means is a widely used clustering method in many communities. However, the initial procedure affects the clustering results seriously, especially the initial centroids. Reasonable initial centroids should be in the region with high data density, so an improved k-means initialization method is proposed based on local data density. Firstly, a definition of local data density function is given, and then initial centroids are chosen based on this definition. Experimental result shows that the proposed method has several advantages:it can find the data densities effective and the reasonable candi-dates of initial centroids, it shows outstanding performance when the number of categories is related large, it is robust to outliers and noisy, it is easy to implement.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222