检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张人上[1]
出 处:《计算机工程与应用》2014年第11期159-162,179,共5页Computer Engineering and Applications
摘 要:针对海量CT图像分割中特征提取的难题,提出一种非下采样轮廓变换(NSCT)和灰度共生矩阵(GLCM)相融合的CT图像特征提取算法。首先采用NSCT对CT图像进行多尺度、多方向分解,并采用GLCM提取子带图像的共生特征量,然后对共生特征量进行主成分分析,消除冗余特征量,构成多特征矢量,最后利用支持向量机完成多特征矢量空间的划分,实现CT图像分割。实验结果表明,NSCT-GLCM能够较好地提取CT图像特征,提高了CT图像分割准确率,可以为医生诊断提供辅助信息。Feature extraction is a key problem for the mass CT image segmentation, a novel features extraction algorithm of CT image is proposed based on Non-Subsampled Contourlet Transform(NSCT)and Gray Level Cooccurrence Matrix (GLCM)in this paper. Firstly, CT image is multi-scale, multi direction decomposed by the NSCT, and the co-occurrence features of sub-images are extracted by GLCM, and then the redundant features are eliminated by the principal component analysis and feature vectors are composed, finally CT image is segmented by the support vector machine based on multi-feature vector space. The experimental results show that the proposed algorithm can extract features of CT image, and has improved the segmentation accuracy of CT images, can provide assisted information for the doctor diagnosis.
关 键 词:图像分割 非下采样轮廓变换 灰度共生矩阵 特征提取 特征融合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38