检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军理工大学通信工程学院,南京210007
出 处:《数据采集与处理》2014年第3期465-471,共7页Journal of Data Acquisition and Processing
基 金:国家重点基础研究发展计划("九七三"计划)(2009CB320400)资助项目;国家自然科学基金重点(60932002)资助项目;国家自然科学基金面上(61072044;61172062)资助项目;江苏省自然科学基金面上(2011116)资助项目
摘 要:为了解决无线定位精度与复杂测距之间的矛盾,提出一种基于接收信号强度比较的非测距定位算法,接收信号强度比较(Received signal strength compare,RSSC)定位算法。为了满足认知无线电网络中主用户的非合作特性,RSSC算法不需要主用户与认知用户合作。通过比较认知用户所测量到的接收信号强度,逐步确定主用户所在的区域,取区域的质心作为主用户的位置估计。根据认知用户密度、用户密度和信噪比3种参数,对RSSC算法的性能进行了分析。实验结果表明,RSSC算法与其他非测距定位算法相比,能够明显提高定位精度。A range-free localization algorithm using received signal strength compare, named as received signal strength compare (RSSC), is proposed to improve the accuracy of localization results by complex distance estimation technologies. According to the non-cooperative characteristic of primary users (PUs) in cognitive radio networks, RSSC does not need the cooperation between PUs and secondary users (SUs). RSSC counts the PUs' area by comparing the received signal strength (RSS) of SUs, and takes the centroid of the area as the location of the PUs. RSSC performance is analyzed in terms of its localization error parameterized by SU den- sity, node density and SNR presents. Experiments demonstrate that the localization accuracy is enhanced a lot with RSSC as compared with other range-free localization algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30