认识和改良中国小麦蛋白质量的遗传基础:策略与现有的研究  

Understanding and Manipulating the Genetic Basis of Protein Quality in Chinese Wheat:Strategies and Current Experiments

在线阅读下载全文

作  者:王道文[1] 曲乐庆[1] 贾旭[1] 张相岐[1] 万永芳[1] 李振声[1] 

机构地区:[1]中国科学院遗传研究所植物细胞与染色体工程国家重点实验室,北京100101

出  处:《遗传》2001年第1期45-45,共1页Hereditas(Beijing)

摘  要:Seed protein content, nutritional balance and processing property of flour are the three major aspects of wheat protein quality. Most Chinese wheat cultivars are comparable to their Western counterparts in terms of seed protein content and nutritional balance. However, relatively few of them possess good processing property. The main reason underlying the poor processing property of hexaploid Chinese wheat varieties is the weakness in gluten strength. Considering that wheat gluten is mainly composed of a mixture of a finite number of storage protein species and that the storage protein species may determine gluten strength through combinatorial controls, we formed the following strategies in our studies on understanding and manipulating the genetic basis of protein quality in Chinese wheat. 1. Genetic analysis. By performing well structured genetic analysis, we hope to identify two types of storage protein genes, those genes whose presence is associated with good processing property (the desirable genes, or the D type genes) and those whose presence is always associated with undesirable processing property (the undesirable genes, or the U type genes). Two sets of genetic analysis are being conducted currently. The aim of the first set of analysis is to obtain nonfunctional mutants for the majority of the genes whose products are present in the gluten. This analysis is expected to yield information on the function of individual members of storage proteins, some of which may be encoded by the D type genes, in gluten strength control. The aim of the second set of analysis is to identify potential genetic factors that may be responsible for causing weakness in gluten strength in Chinese wheat through the use of recombinant inbreed lines. This analysis may produce information on the function of the storage proteins specified by the U type genes. 2. Molecular analysis. On the basis of above genetic analysis, a molecular approach will be undertaken to clone the D and U type genes. The cloned genes will be characterized Seed protein content, nutritional balance and processing property of flour are the three major aspects of wheat protein quality. Most Chinese wheat cultivars are comparable to their Western counterparts in terms of seed protein content and nutritional balance. However, relatively few of them possess good processing property. The main reason underlying the poor processing property of hexaploid Chinese wheat varieties is the weakness in gluten strength. Considering that wheat gluten is mainly composed of a mixture of a finite number of storage protein species and that the storage protein species may determine gluten strength through combinatorial controls, we formed the following strategies in our studies on understanding and manipulating the genetic basis of protein quality in Chinese wheat. 1. Genetic analysis. By performing well structured genetic analysis, we hope to identify two types of storage protein genes, those genes whose presence is associated with good processing property (the desirable genes, or the D type genes) and those whose presence is always associated with undesirable processing property (the undesirable genes, or the U type genes). Two sets of genetic analysis are being conducted currently. The aim of the first set of analysis is to obtain nonfunctional mutants for the majority of the genes whose products are present in the gluten. This analysis is expected to yield information on the function of individual members of storage proteins, some of which may be encoded by the D type genes, in gluten strength control. The aim of the second set of analysis is to identify potential genetic factors that may be responsible for causing weakness in gluten strength in Chinese wheat through the use of recombinant inbreed lines. This analysis may produce information on the function of the storage proteins specified by the U type genes. 2. Molecular analysis. On the basis of above genetic analysis, a molecular approach will be undertaken to clone the D and U type genes. The cloned genes will be characte

关 键 词:小麦 蛋白质 遗传基因 改良 

分 类 号:Q512.1.032[生物学—生物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象