检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:向俊杰[1] 毕闯[1] 向勇[1,2,3] 张千[1] 王京梅[3]
机构地区:[1]电子科技大学能源科学与工程学院,成都611731 [2]东莞电子科技大学电子信息工程研究院,东莞523808 [3]电子科技大学,电子薄膜与集成器件国家重点实验室,成都610054
出 处:《物理学报》2014年第12期66-74,共9页Acta Physica Sinica
基 金:广东省引进创新科研团队项目(批准号:201001D0104713329);中央高校基本科研业务经费(批准号:ZYGX2013J114)资助的课题~~
摘 要:Z源变换器由于Z源网络的嵌入,具有高电压传输比,降低开关器件损耗,提高系统效率等优点,在直流变换、逆变等许多领域具有广泛的应用.本文研究了基于峰值电流模式控制的同步开关Z源变换器的非线性动力学,建立了连续电流模式下同步开关Z源变换器的离散迭代映射模型;通过特征值的运动轨迹分析了参考电流对系统稳定性的影响,给出了系统稳定运行的参数域;基于分岔图和Lyapunov指数图发现了此变换器存在倍周期分岔、边界碰撞分岔、切分岔和阵发混沌,分析了边界碰撞分岔和混沌演化过程及其产生的机理;最后通过电路仿真和实验验证了理论分析的正确性.研究结果表明:随着参考电流的增加,峰值电流模式控制同步开关Z源变换器从周期1经历倍周期分岔进入周期2和周期4,然后由于边界碰撞分岔过渡到阵发混沌态,接着通过切分岔进入周期3,最后再次由于边界碰撞分岔进入混沌态.Z-source converter can have a high voltage transmission ratio, reduce the losses of switching devices, and improve the efficiency of the system, etc., because of embedding the Z-source network into the system, which makes it find wide applications in DC conversion, inverters, etc. Nonlinear dynamics of the peak-current-mode controlled synchronous switching Z-source converter is studied for the first time so far as we know. The discrete iterated mapping model under continuous current mode is established, while the effects of the reference current on the stability of the system are analyzed by using the trajectories of eigenvalues, and the steady state operation parameter domain is schemed. Period-doubling bifurcation, border-collision bifurcation, tangent bifurcation and intermittent chaos are found in this converter based on the bifurcation diagram and the Lyapunov exponent diagram, and the evolvement and mechanism of the border-collision bifurcation and chaos are analyzed. Finally, the circuit simulation and the experimental results show that the theoretical analysis is correct. Results obtained indicate that with the increase of the reference current, the peak-current-mode controlled synchronous switching Z-source converter goes from period 1 into period 2 and period 4 through the period-doubling bifurcation, and moves into the intermittent chaos due to the border-collision bifurcation. Then the system exhibits a period-3 behaviour because of the tangent bifurcation. Finally, the converter moves into chaos due to the border-collision bifurcation again.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239