基于D-S证据理论的柴油机故障检测方法  

Research on fault detection method of diesel engine based on D- S evidential theory

在线阅读下载全文

作  者:宋振海[1] 潘兴隆[2] 贺国[2] 

机构地区:[1]海军潜艇学院动力操纵系,山东青岛266042 [2]海军工程大学船舶与动力学院,湖北武汉430033

出  处:《舰船科学技术》2014年第6期106-110,共5页Ship Science and Technology

摘  要:给出一种基于D-S证据理论的多传感器信息融合方法,并应用于某型船用柴油机故障检测中。首先,为克服人为因素和系统误差的干扰,在现场采集数据基础上,采用概率统计的方法来构造D-S证据理论的基本概率分配函数;然后,利用D-S证据理论对多传感器采集的信息进行融合;最后,将该方法应用于某型船用柴油机的故障检测中。实验结果表明,利用D-S证据理论解决了该型柴油机故障检测中多传感器信息融合问题,有效避免了人为因素的干扰,克服了单传感器信息的不确定性和片面性,提高了故障检测的准确度和可信度。A method of multi-sensor information fusion is proposed based on D-S evidential theory,which is applied to fault detection of a certain marine diesel engine.At first,to avoid the negative effect of human factors and the system error,the basic probability assignment function (BPAF) is constructed by using probability statistics method based on field data acquisition.Then,the D-S evidential theory is applied to multi-sensor information fusion.Finally,this method is applied to fault detection of a certain marine diesel engine.The experiment results indicate that the problem of multi-sensor information fusion in the diesel engine fault detection is solved by using D-S evidential theory,and the human factors in constructing the basic probability assignment function and the uncertainty of single sensor information are avoided,and the accuracy and credibility are improved.

关 键 词:D-S证据理论 多传感器信息融合 故障检测 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象