机构地区:[1]西安交通大学经济与金融学院,陕西西安710061
出 处:《中国人口·资源与环境》2014年第8期42-48,共7页China Population,Resources and Environment
基 金:国家社会科学基金项目"全球经济调整与中国经济发展方式转变研究:基于FDI传导机制与国际市场结构变化的分析"(编号:09XJY011);教育部后期资助项目"中国区域工业差异与经济增长空间分布动态研究"(编号:08JHQ0052)
摘 要:基于超越对数生产函数,并运用产出距离函数建立以资本、劳动力和能源为投入要素,以GDP和CO2排放为产出要素的随机前沿模型,分别测度全国30个省区1995-2010年期间全要素CO2的排放效率。在此基础上,从城镇化水平、要素禀赋、人口规模、产业结构、技术因素等五个维度出发,运用Tobit面板模型对影响全要素碳减排效率的因素及其显著程度进行了实证分析。主要结论表明,从全国层面看,城镇化率、资本深化程度与全要素碳减排效率均呈非线性影响关系,随着城镇化率的提高、资本的逐步深化,碳减排效率经历了先下降后上升的趋势;能源密集度本身对碳减排效率无显著作用,但对城镇化水平促进碳减排效率提高有放大效应;人口规模的减小、二产占比的下降与能源强度的降低均会促使碳减排更有效率,人口规模因素对碳减排效率的影响系数为0.049,略高于产业结构因素和技术因素,相关系数分别是0.030 6和0.014 2。进一步将全国样本按照要素禀赋异质性分为资本密集型省区、能源密集型省区、劳动密集型省区,对三个子样本的回归结果显示只有能源密集型省区的城镇化率与全要素碳减排效率之间在5%的显著性水平上存在相关关系。由以上结论得到的启示是,政府面对国际碳减排和全面推进城镇化建设双重压力下,要注意从不同省份要素禀赋的异质性出发,通过建立碳市场等措施倒逼能源型省份控制城镇化进程;疏通资本密集型省区资源向节能资源研发部门流动的通道;充分发挥劳动密集型省区的人口红利作用和第三产业对第二产业的挤出效应。Based on the logarithmic function under production theory, this paper applies the distance function to establish the stochastic frontier model which takes capital, labor and energy as input elements, and GDP, CO2 emissions as output, to measure the total factor CO2 emission reduction efficiencies of China's 30 provinces in China from 1995 to 2010 respectively. On this basis, using Tobit panel model, this paper empirically analyzes the influencing factors of CO2 emission reduction efficiency from five dimensions, which are urbanization level, factor endowment, population scale, industrial structure and technical elements. In general, this paper finds out that there is a nonlinear relationship between carbon reduction efficiency and urbanization level, so does capital deepening. In other words, the carbon emission efficiency would be decline first and then increase with the urbanization level improving and capital deepening. Energy intensity has no significant influence on carbon efficiency; however, it can enhance the effect on carbon efficiency when interacted with urbanization level. Population size, industrial structure and energy intensity play a negative role on carbon efficiency and the coefficients are 0. 049, 0. 030 6 and 0. 014 2 respectively. Furthermore, by dividing the whole country into three parts according to factor endowment disparity, it finds that only in provinces endowed with energy resource is there a significant nonlinear relationship between urbanization level and carbon reduction efficiency at 5% significant level. On the basis of these results, it suggests that government should carry out separate policies in different provinces with vary factor endowments to face both international carbon reduction pressure and improving urbanization stress, such as establishing carbon market in energy intensive area to control urbanization, increasing investment on R&D of clean energy and reducing dependence on second industry in labor intensive provinces.
关 键 词:要素禀赋 城镇化率 全要素碳减排效率 随机前沿分析
分 类 号:X24[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...