检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学计算机科学技术学院,北京100081 [2]北京理工大学光电学院,北京100081
出 处:《计算机辅助设计与图形学学报》2014年第7期1084-1091,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:国家重大专项(2012ZX03002004)
摘 要:针对在海量场景识别中现有透视失真校正方法的鲁棒性尚不理想,不足以用于对场景复杂、干扰较多的户外建筑物图像进行准确校正的问题,提出一种改进的户外建筑物透视失真校正方法.该方法针对建筑物的形状特点,结合手机的重力感应功能对Hough变换直线检测算法进行了改进,并使用RANSAC方法剔除部分错误直线,提高了算法的鲁棒性;利用消隐点坐标对图像进行校正,恢复建筑物的仿射结构,使其与训练图像更加接近;在实验中,将校正后的图像用于图像识别,并提出一种基于互信息的融合策略,将侧视图和校正后的图像结合在一起进行识别.实验结果表明,该方法能够鲁棒地对户外建筑物图像进行透视校正,极大地提高了户外建筑物识别正确率.For recognition of massive scenes, it can improve rate of recognition to rectify the building images with perspective distortion. The robustness of existing perspective distortion rectification methods is not enough to be used for complex outdoor building images with strong interference. In this paper, an improved perspective distortion rectification method was given. For the shape features of buildings, the gravity sensor on mobile phones was used in this method and make improvements on Hough transformation. Then RANSAC is used to get rid of some wrong lines. So the robustness of the method was improved. The horizontal and vertical vanishing points of buildings were used to restore affine structure of buildings and make them closer to the training images. In experiment, the rectified images were used to recognize images. Furthermore, a fusion strategy with mutual information was proposed to combine the result of a side view and a rectified image. The experiments showed that the proposed method can rectify outdoor building images robustly, and greatly improve correct rate of the recognition of outdoor buildings.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143