检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆大学自动化学院,重庆沙坪坝区400030
出 处:《电子科技大学学报》2014年第3期381-387,共7页Journal of University of Electronic Science and Technology of China
基 金:中央高校基本科研业务费(CDJZR10170007);国家自然科学基金(61105030)
摘 要:基于Mamdani模糊推理的边缘检测,将多个特征作为整体进行一步推理,但不同特征难以兼顾对模糊边缘的敏感和噪声的抑制,导致算法鲁棒性下降。为此,该文提出了一种基于重要性加权的分步推理算法,根据各特征对边缘敏感和噪声抑制的重要性分步进行模糊推理,并加权每步推理结果作为边缘隶属度。并提出了一种基于面积近似的重心法改进算式,能更好兼顾解模糊的准确性和实时性。实验结果表明了该算法的准确性、鲁棒性和实时性。Edge detection based on Mamdani fuzzy inference regards all features as a whole to carry on one-step inference. However, this will decrease the robustness of algorithm since different features are difficult to guarantee both the sensibility for fuzzy edge and the suppression for noise. This paper presents a step-by-step processing scheme based on multi-features importance-weighted fuzzy inference. According to the importance degree of each feature in the edge representation and noise suppression, the proposed method carries on a step-by-step fuzzy inference and weights all inference results to obtain the edge membership. In addition, this paper presents an improved centroid method based on area approximation, which has higher precision and real-time in defuzzification. The experiment results show the precision, robustness and real-time of the proposed algorithm.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28