检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李雄飞[1,2] 赵浩宇[1] 陈霄[3] 赵宏伟[1,2]
机构地区:[1]吉林大学软件学院,长春130012 [2]吉林大学计算机科学与技术学院,长春130012 [3]吉林农业大学信息技术学院,长春130118
出 处:《吉林大学学报(工学版)》2014年第4期1140-1144,共5页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(61101155);吉林省科技发展计划项目(20140101184JC)
摘 要:该方法利用视觉底层特征颜色、方向、强度和轮廓构建显著图,通过最大熵估计方法获得显著特征分割蒙板;利用中层视觉特征对图像进行超分割,其中在聚类时考虑特征向量的空间信息,并依据显著性自动分配初始参数,使分割后的超像素与目标轮廓更接近;最后将底层视觉特征和中层视觉特征融合,通过底层特征分割蒙板判定图像的超像素归类,将不规则目标从背景中分离。实验结果表明:本文分割方法受复杂背景和光照的影响较小,分割目标轮廓准确,实现了不规则显著目标与复杂背景的有效分离。A salient object segmentation method based on low-level visual feature and middle-level visual cues was proposed. First, the low-level visual feature of the original image was extract via color, intensity, orientation and local energy feature channels to build the saliency map. The salient feature mask was acquired via the maximum information entropy principle. Then In middle-level, the visual cues were applied for over-segmentation of an image into superpixels. In clustering, the spatial information of the feature vector was taken into consideration according to the salient intensity, and the initial parameters were automatically set. Thus, the superpixels after segmentation accurately approach the object contour. Finally, for segmenting the irregular object from background, the superpixels were classified using the salient feature mask, and the low-level and middle-level features were fused. The experiment results demonstrate that the proposed method is less sensitive to complex illumination and background, and can be used to segment contour accurately. Moreover, it can be applied to segment irregular objects from complex background.
关 键 词:计算机应用 超像素 图像分割 视觉显著特征 显著图
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229