电网企业信息运维故障诊断模型的研究与应用  被引量:12

Research and Application of Information Operation and Maintenance Fault Diagnosis Model for Power Grid Enterprise

在线阅读下载全文

作  者:曲朝阳[1] 薄小永 刁赢龙 王蕾[1] 颜佳[2] 

机构地区:[1]东北电力大学信息工程学院,吉林吉林132012 [2]吉林省电力有限公司信息通信公司,长春130062

出  处:《电测与仪表》2014年第13期47-54,共8页Electrical Measurement & Instrumentation

基  金:国家自然科学基金资助项目(51277023);国家自然科学基金资助项目(51077010);吉林省科技发展计划重点支撑项目(20120338)

摘  要:电力行业信息化已然成为新时代之大势所趋,对于电力调度运维中心来说,如何确保信息系统各种软硬件资源的正常运行是一个值得研究的重要问题。文章充分利用运维监管方法,提出一种基于FP-Growth关联规则算法的电网企业信息运维故障诊断模型。首先对电网信息系统运维监管模式进行了构建,根据电力企业规程和运维人员的实际经验制定了一系列运维指标。然后在此基础之上详细设计了信息运维故障诊断模型,分析在不同指标违规的情况下诊断推理的过程,并将其应用到实际运行的电网企业信息系统实时监管平台(ISRMP)中。最后介绍了某省电力有限公司信息通信公司ISRMP的初步实践。Power industry informatization has become the general trend in the new era. For power dispatching operation and maintenance center,how to ensure the normal operation of various software and hardware resources is an important yet unsolved problem. Making full use of operation and maintenance supervision method,the paper presents an information operation and maintenance fault diagnosis model based on FP - growth association rule algorithm for power grid enterprise. First,information system operation and maintenance supervision model of the power grid is constructed. According to power enterprise regulations and practical experience of operation and maintenance personnel,a series of operation and maintenance indicators are set. Then the fault diagnosis model is designed in detail based on the above indicators. The diagnosis reasoning process under different cases of non - compliance indicators is analyzed,which is applied to the actual operation project of the power grid enterprise information system real - time monitoring platform (ISRMP). Finally,preliminary application of the ISRMP in the information and communication company of a provincial electric power is introduced.

关 键 词:运维监管 FP-GROWTH算法 关联规则 故障诊断 

分 类 号:TM711[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象