检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学南岭校区材料科学与工程学院,长春130025
出 处:《中国有色金属学报》2001年第2期216-220,共5页The Chinese Journal of Nonferrous Metals
基 金:国家自然科学基金资助项目 !(5 97710 5 5 )
摘 要:采用人工神经网络研究了在不同型温、浇温和转速条件下以离心法制备Al 16 %SiFGM时初晶硅的分布规律 ,并通过实验进行了验证。在建立神经网络模型时 ,以型温、浇温、转速等工艺参数作为人工神经网络的输入 ,以内生初晶硅分布的相对厚度作为输出。实验表明 ,预测结果与实际测定结果比较吻合 。Artificial neural network has been applied to acquire the constitutive relationships of endogenetic particle distribution in FGM prepared by centrifugal casting at different mould temperature, pouring temperature and rotating speed. Building up the neural network model of the constitutive relationship for the alloy, mould temperature, pouring temperature and rotating speed are taken as the inputs and relative thickness of endogenetic particle distribution in FGM is taken as the output. At the same time, four layers are constructed, six neurons are used in the first hidden layer and four neurons are used in the second hidden layer. The activation function in the output layer of the model obeys a linear function, while the activation function in the hidden layer is a sigmoid function. Comparison of the predicted and experimental results shows that the neural network model used to predict the constitutive relationship of the endogenetic particle distribution in FGM has good learning precision and good generalization. It's available to forecast endogenetic particle distribution in FGM prepared by centrifugal casting based on artificial neural network. [
关 键 词:离心法 梯度功能材料 人工神经网络 内生颗粒 颗粒分布
分 类 号:TB34[一般工业技术—材料科学与工程] TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222