检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西安石油学院学报(自然科学版)》2001年第2期62-64,共3页Journal of Xi'an Petroleum Institute(Natural Science Edition)
摘 要:对于描述不可压缩粘性流体流动的 Navier- Stokes方程 ,其解的定性分析结果对于该方程的数值求解及其分歧问题的研究都是十分重要的 .经典理论认为 ,不可压缩粘性流体定常旋转流在Sobolev空间 [H1(Ω ) ]3中的范数的上界与流体粘度成反比 ,随着流体粘度的减小 ,这一上界会无限地增大 .文中利用空间分解定理、高斯公式及 Sobolev空间方法证明了不可压缩粘性流体定常旋转流在 Sobolev空间 [H 1(Ω ) ]3中存在一个与流体粘度无关的上界 .The flow of incompressible viscous fluid is controlled by Navier-Stokes Equations.The qualititave analysis of the solutions of the equation is important to the studies of bifurcation problems and numerical solutions of the equations.In classic theory,it is held that, in Sobolev Space [H 1(Ω)] 3, there is the upper bound of the norm of the constant rotating flow of the incompressible viscous fluid between two closed surfaces. It is inversely proportional to the viscosity of the fluid, and it will go to infinity when the viscosity goes to zero. But in this paper, it is proven that the upper bound has nothing to do with the viscosity of the fluid by using decomposing theorems of spaces, Gauss's formula and Sobolev Space methods.
关 键 词:不可压缩粘性流体 旋转流动 NAVIER-STOKES方程 粘度 有界性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80