一般 Hirsch问题(英文)  

On General Hirsch Problem

在线阅读下载全文

作  者:徐森林[1] 徐栩[1] 杨芳云[1] 

机构地区:[1]中国科学技术大学数学系,安徽合肥230026

出  处:《应用数学》2001年第3期59-62,共4页Mathematica Applicata

基  金:Project Supported by NNSFC(199710 81)

摘  要:Hirsch问题 :设 U R3,V R2 为开集 ,如果 f∶ U→ V是 C1满映射 ,则 f必须有正则点吗 ?更一般地 ,张敦穆 [8]提出了一般的 Hirsch问题 :设 N ,P为 Cm 流形 ,dim N =n,dimp =p,n >p,f∶ N→ P是 Cr映射 ( 1≤ r≤ n) .当 1≤ r≤ n -p时 f必须有正则点吗 ?本文讨论了这个问题 ,应用 [8]中方法和 Norton[5]和 Bates[1 ]的估计 ,我们得到了定理 1和定理 2 .它们部分地推广了The Hirsch Problem (HP) asked : Let UR3,VR2 be open sets. If f∶U→V is C 1 and surjective, must f have regular points? More generally, Zhang proposed a General Hirsch Problem (GHP): Let N,P be Cm manifolds, dim N=n,dimP=p,n>p,f∶N→P is Cr map(1≤r≤m). When 1≤r≤n-p, must f have regular points? We discuss this problem. Using the method in and an estimated due to Norton and Bates , we get Theorem 1 an d Theorem 2. They partially generalize the main theorem in .

关 键 词:Hirsch问题 Sard定理 正则点 临界点 满映射 估计 C^m流形 

分 类 号:O189.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象