检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电工技术学报》2001年第4期71-75,60,共6页Transactions of China Electrotechnical Society
基 金:国家自然科学基金资助项目 (5 98770 16)
摘 要:创造性提出了基于多值神经逻辑网络 (MNLN)冗余纠错和前馈神经网络 (FNN)组合的配网故障定位原理和实现方法。根据配网SCADA系统汇集的信息具有冗余特征 ,及配网拓扑结构的关联性可获得各馈线终端单元 (FTU)信息之间的冗余关系 ,提出了基于MNLN原理的信息冗余纠错的模型及逻辑推理规则。经过纠错处理的、无畸变的信息即形成故障定位FNN模型的输入矢量集。文中所提出原理和方法对配电网具有广泛的通用性 。The principle and realization method of fault secti on diagnosis for distribution networks, based on the combination of multiple-valu ed neural logic network (MNLN) redundant error correct and feedfoward neural net works (FNN) are creatively presented. According to the redundant character of in formation which is collected by SCADA system of distribution networks and redund ant relation among information of Feeder Terminal Units (FTUs) which can acquire d from the correlativity of topology structure of distribution networks. The mod el and inference rules of information for redundant error correct based on the t heory of MNLN are proposed. Therefore, the error-corrected disposed information without distortion form the input vector of FNN model to be used as fault secti on diagnosis. In this paper, the proposed principle and method have widely gener ality for distribution networks, have high fault-tolerance performance and impo rtant practical worth.
关 键 词:配电网 故障定位 多值神经逻辑网络 前馈神经网络 冗余纠错 容错性能
分 类 号:TM727[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3