工程测量数据中的粗差诊断和处理技术  

TECHNOLOGY OF DIAGNOSIS AND ADJUSTMENT FOR OUTLIERS IN MEASURED DATA OF ENGINEERING

在线阅读下载全文

作  者:杨宜康[1] 宋安军[1] 黄永宣[1] 胡保生[1] 

机构地区:[1]西安交通大学系统工程研究所,西安710049

出  处:《机械工程学报》2001年第10期59-63,共5页Journal of Mechanical Engineering

基  金:国家自然科学基金资助项目(69775012)。

摘  要:从测量数据序列的时-频特征出发,借助频谱图识别测量数据中的粗差的位置和性质。采用加权的均方误差准则来优化估计模型的参数,实现对测量序列的抗扰最佳估计。实例表明利用频谱图进行粗差诊断准确可靠,采用加权误差能量函数的小波神经网络估计模型具有逼近性能好、收敛速度快的优点,并能够有效地消除粗差对估计结果的影响。An approach based on time-frequency analysis to recognize outliers in measured data series by spectrogram is proposed, which discovers the time-frequency character of measured data series. To obtain the best estimation of anti-jamming for measured series, the rule of weighted-square error is introduced to optimize the parameters of estimating model. Example shows that diagnosing outliers by spectrogram is accurate and reliable, and wavelet neural network of weighted error-energy function has excellent approximation ability and fast convergence speed. Moreover, the outliers' influence on the estimate result can be eliminated efficiently by this way.

关 键 词:粗差 频谱图 加权误差能量函数 小波神经网络 工程测量 数据处理 

分 类 号:TB22[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象