检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学,南京210016 [2]南昌航空工业学院土木建筑系,南昌330034
出 处:《复合材料学报》2001年第4期103-107,共5页Acta Materiae Compositae Sinica
基 金:国家自然科学基金资助项目 ( 5 96 75 0 2 5 )
摘 要:利用 Galerkin方法分析了 von- Karm an型两邻边铰支两邻边夹紧正交各向异性矩形板。所设的位移函数为梁振动函数 ,它不仅能精确地满足边界条件 ,而且具有正交的特性 ,从而把复杂的非齐次非线性偏微分方程组化为一组非线性代数方程组。通过非线性方程组的线性化和可调节参数的修正迭代解法找出问题的解。实践证明 ,梁振动函数的收敛很快 ,只须取出级数的前几项即可满足精度要求。In the paper, von Karman type orthotropic rectangular plates with two adjacent edges simply supported and the other two adjacent edges clamped are analysed by using Galerkin method.The beam vibration functions are taken as displacement functions that may accurately satisfy the boundary conditions, and have orthogonality property.The governing nonlinear partial differential equations are reduced to an infinite set of systems of nonlinear algebraic equations containing Fourier coefficients which have been solved by linearizing iterative procedures. The series of beam vibration functions are rapidly converged. Only a few items of the series may meet the need of accuracy. Numerical results of deflection and stress are obtained for different composite materials.
关 键 词:两邻边铰支两邻边夹紧 正交各向异性 几何非线性 代数方程组 矩形板 中等大挠度 复合材料 梁振动函数
分 类 号:TB33[一般工业技术—材料科学与工程] O327[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.144.95