检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算力学学报》2002年第1期63-68,共6页Chinese Journal of Computational Mechanics
基 金:国家杰出青年科学基金资助研究项目( 5 982 5 10 5 )
摘 要:针对随机结果正交展开理论计算上的弱点 ,本文在分析扩阶矩阵特性的基础上 ,于 Ritz模态向量子空间中对扩阶方程实现动力聚缩 ,大大提高了正交展开理论对实际工程问题的分析能力。分析实例表明 :即使结构参数具有很大变异性 (如δ =0 .4 )时 ,该算法依然能理想地与 Monte Carlo法模拟结果相吻合 ,计算时间则远远小于 Monte Carlo模拟法。同时 。The applicability of the orthogonal expansion theory of stochastic structures in the practical engineering is severely undermined by its high calculation cost. In order to remedy this disadvantage, on the basis of analyzing the characteristics of the order-expanded equations, a method for condensing the equations in a subspace spanned by Ritz vectors is proposed in this paper. A numerical example demonstrates that the results derived from the dynamic condensation algorithm are in good agreement with Monte Carlo simulation method, even though the variability of structures' physical parameters is very large (esp. δ=0.4). Moreover the calculation time is much shortened. The necessity of considering the variability of structures' parameters in structures' dynamic analysis is also indicated in the paper.
关 键 词:随机结构 正交展开 Ritz模态向量 MONTECARLO模拟 Ritz动力聚缩法
分 类 号:O324[理学—一般力学与力学基础] TU312[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.97.46