RBF-CSR方法及其应用于裂解装置建模的研究  被引量:9

The Radial Basis Functions-Cyclic Subspace Regression Approach and its Application to Cracker Modeling

在线阅读下载全文

作  者:庄凌[1] 陈德钊[1] 赵伟祥[1] 张红[1] 胡上序[1] 

机构地区:[1]浙江大学化学工程与生物工程学系,浙江杭州310027

出  处:《高校化学工程学报》2002年第1期64-69,共6页Journal of Chemical Engineering of Chinese Universities

基  金:国家自然科学基金(20076041)

摘  要:RBF-CSR是在分析RBF-PLS的基础上提出的新方法。它保留了RBF-PLS的优点:采用神经网络的结构, 又用数学方法直接求解,免去了ANN冗长的训练过程和其它诸多欠缺。RBF-CSR方法可以在更宽广的空间内寻找最优的网络参数,它所建立的模型具有很高的预报精度和良好的稳定性,又有简洁的解析形式,便于优化等进一步的计算和处理。该方法已成功地应用于裂解装置的建模。Artificial neural network is a frequently-used modeling method in chemical engineering, especially for problems with complex mechanism. But the training of ANN is difficult. A lot of trouble is generated in the training process such as overfitting, converging to local optimum, etc. A new idea RBF-PLS approach that artificial neural network and regression method are combined for solving the problem was presented by Massart. In this article the RBF-CSR approach was proposed by analyzing RBF-PLS. The approach has the merit of RBF-PLS, i.e. using a structure similar to that of neural network, getting solution by mathematical methods directly, without the tedious training process of ANN and other evoking shortcomings. Finding the optimal coefficient in wider space, RBF-CSR can improve the accuracy and stability of predicted value of model. Thus models created by RBF-CSR were better than that created by RBF-PLS. Moreover the models had a brief analysis formula which was convenient for further processing such as optimization. It was successfully applied to cracker modeling.

关 键 词:径向基函数 偏最小二乘回归 循环子空间回归 裂解装置 化工过程 RBF-CSR 建模方法 

分 类 号:TE966[石油与天然气工程—石油机械设备] TQ018[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象