检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广州地理研究所,广州510070 [2]香港大学城市规划及环境管理研究中心
出 处:《地理学报》2002年第2期159-166,共8页Acta Geographica Sinica
基 金:国家自然科学基金项目(40071060);香港 Croucher基金项目 ~~
摘 要:提出了一种基于神经网络的单元自动机(CA)。CA已被越来越多地应用在城市及其它地理现象的模拟中。CA模拟所碰到的最大问题是如何确定模型的结构和参数。模拟真实的城市涉及到使用许多空间变量和参数。当模型较复杂时,很难确定模型的参数值。本模型的结构较简单,模型的参数能通过对神经网络的训练来自动获取。分析表明,所提出的方法能获得更高的模拟精度,并能大大缩短寻找参数所需要的时间。通过筛选训练数据,本模型还可以进行优化的城市模拟,为城市规划提供参考依据。There is rapid development of CA models for simulation of land use patterns and urban systems recently. Traditional methods using multicriteria evaluation (MCE) have limitations because they only use a linear weighted combination of multiple factors for predictions. It cannot explain much of the non-linear variations presented in complex urban systems. It is most attractive that neural networks have the capabilities of nonlinear mapping which is critical for actual urban systems. The study indicates that improvement has been made by using the proposed model to simulate non-linear urban systems. The advantages of using neural networks are apparent. The method can significantly reduce much of the tedious work, such as the requirements for explicit knowledge of identify relevant criteria, assign scores, and determine criteria preference. Furthermore, variables used hi spatial decision are always dependent on each other. General MCE methods are not suitable to handle relevant variables. Neural networks can learn and generalize correctly and handle redundant, inaccurate or noise data which are frequently found in land use information. Users don't need to worry about which variable should be selected or not. Knowledge and experiences can be easily learnt and stored for further simulation. General CA models also have problems in obtaining consistent parameters when there are many variables in the prediction. It is very time consuming in finding the proper values of parameters for CA models through general calibration procedures. This paper has demonstrated that neural network can be integrated hi CA simulation for solving the problems in finding the values of parameters. Users don't need to pay great efforts in seeking suitable parameters or weights which are difficult to be determined by general CA methods. In the proposed method, the parameters or weights required for CA simulation are automatically determined by the training procedures instead of by users. It is convenient to embed the neural network in the CA simula
关 键 词:神经网络 单元自动机 城市模拟 地理信息系统 东莞市
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112