基于幂次平均的离散归一化总梯度法  被引量:5

Discretization of normalized total gradient based on power mean

在线阅读下载全文

作  者:王彦国[1] 吴姿颖 邓居智[1] 杨亚新[1] 黄松 罗潇[1] Wang Yanguo;Wu Ziying;Deng Juzhi;Yang Yaxin;Huang Song;Luo Xiao(Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China U-niversity of Technology,Nanchang,Jiangxi 330013,China)

机构地区:[1]东华理工大学放射性地质与勘探技术国防重点学科实验室,江西南昌330013

出  处:《石油地球物理勘探》2018年第6期1351-1364,I0010,共15页Oil Geophysical Prospecting

基  金:国家自然基金项目(41504098);江西省自然科学基金项目(2017BAB213029;2017BAB213030)联合资助

摘  要:归一化总梯度法是重磁资料处理与解释的常用方法之一,但其不能有效地识别叠加场源信息,不能判别地质体的几何形状。为了提高归一化总梯度法的实用性,首先采用迭代滤波进行稳定的向下延拓计算,再利用幂次平均函数进行归一化处理,最后根据地面位场异常总梯度的特征对测线进行离散化,由此提出了基于幂次平均的离散归一化总梯度法。模型试验表明,方法不仅可以有效地识别叠加场源的位置信息,而且还可以根据最佳幂次数来判断地质体的几何形状。实例应用表明,相对于常规归一化总梯度法,基于幂次平均的离散归一化总梯度法具有更高的反演精度和更强的地质解释能力。The normalized total gradient algorithm is a commonly used method for data processing and interpretation of gravity and magnetic data.However,this method cannot recognize the information of multi-sources and identify the geometry of geologic bodies.In order to improve the practicability of the normalized total gradient method,the iterative filtering is used for the stability calculation of downward continuation.And then the power mean function is used for normalized processing.Finally survey lines are discretized on the basis of curve characteristics of the ground total gradient anomaly.Thereout,we propose a discretization of normalized total gradient method based on power mean. Model tests show that the new method can effectively obtain the locations of field sources and the geometry of sources which can be estimated by the best power time.In application,the discretization of the normalized total gradient method based on power mean has higher inversion accuracy and stronger geological explanatory ability than conventional method.

关 键 词:归一化总梯度 幂次平均 迭代法 离散化 几何形状 

分 类 号:P631[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象