基于低秩-稀疏联合表示的视频序列运动目标检测(英文)  被引量:4

Low-Rank Sparse joint Representation for Moving Object Detection in Video

在线阅读下载全文

作  者:杨磊[1] 庞芳 胡豁生[2] Yang Lei;Pang Fang;Hu Huosheng(School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China;School of Computer Science and Electrical Engineering,University of Essex,Colchester,CO43SQ,United Kingdom)

机构地区:[1]上海大学机电工程与自动化学院,上海200444 [2]埃塞克斯大学计算机科学与电气工程学院

出  处:《系统仿真学报》2018年第12期4693-4702,共10页Journal of System Simulation

基  金:National Natural Science Foundation of China(31100709);Shanghai science and Technology Committee(18411952200)

摘  要:对于固定摄像机的视频序列,假设背景具有低秩特征,动态前景具有稀疏特性,提出了一种基于低秩稀疏联合表示的运动检测方法。思路如下:通过图像预处理降低视频序列的噪声;估计连续帧之间的光流,生成二进制运动掩模作为运动权重矩阵;基于子空间学习理论,建立了低秩背景与稀疏前景的优化模型;利用ADMM-BCD迭代算法得到视频背景和前景。实验结果表明,该方法优于其他同类运动检测方法,对慢速运动目标检测效果良好。For the video sequences with fixed cameras,it is a reasonable assumption that the fixed background has low-rank characteristic,and the dynamic foreground has sparse characteristic.A new motion detection method based on low-rank and sparse joint representation is proposed in this paper.The ideas of the proposed method are described as follows:The noise of video sequence is removed by image preprocessing.The optical flow between continuous video sequences is estimated,which is used to generate a binary motion mask as a movement weight matrix.An optimization model with low-rank background and sparse foreground is established based on the idea of subspace learning theory.The background and foreground of each frame are obtained by using the ADMM-BCD iterative algorithm. Experimental results show that the proposed method is super to the other same sort of moving detection methods.The proposed method has perfect effect on slow moving target detection.

关 键 词:鲁棒主成分分析 子空间学习 背景-前景建模 运动检测 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象