检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊汉江[1] 郑先伟[1] 丁友丽 张艺 吴秀杰 周妍 XIONG Hanjiang;ZHENG Xianwei;DING Youli;ZHANG Yi;WU Xiujie;ZHOU Yan(State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China;School of Mathematics and Statistics,Wuhan University,Wuhan 430079,China)
机构地区:[1]武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079 [2]武汉大学数学与统计学院,湖北武汉430079
出 处:《武汉大学学报(信息科学版)》2018年第12期2303-2309,共7页Geomatics and Information Science of Wuhan University
基 金:国家重点研发计划(2018YFB0505401);国家自然科学基金(41871361,41701445);测绘遥感信息工程国家重点实验室自主科研项目~~
摘 要:针对现有三维点云模型重建对象化和结构化信息缺失的问题,提出一种基于图模型的二维图像语义到三维点云语义传递的算法。该算法利用扩展全卷积神经网络提取2D图像的室内空间布局和对象语义,基于以2D图像超像素和3D点云为结点构建融合图像间一致性和图像内一致性的图模型,实现2D语义到3D语义的传递。基于点云分类实验的结果表明,该方法能够得到精度较高的室内三维点云语义分类结果,点云分类的精度可达到73.875 2%,且分类效果较好。In this paper, we propose an effective algorithm based on graph model for semantic transfer from 2 D images to 3 D point clouds, which can effectively solve the problem of objectification and lack of structured information of 3 D point cloud model. Our proposed method uses the extended full convolutional neural network to extract the indoor space layout and object semantics of 2 D images, and then implements the transfer of 2 D semantics to 3 D semantics based on the 2 D image superpixels and 3 D point clouds as nodes to construct a graph model of consistency between images and intra-image consistency. The experiment from 3 D point cloud shows that the proposed method can obtain accurate indoor 3 D point cloud semantic classification results. The accuracy of point cloud classification can reach 73.875 2%, and the classification effect is better.
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.152.109