检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Saheb Pal Sourav Kumar Sasmal Nikhil Pal
机构地区:[1]Department of Mathematics,Visva-Bharati Santiniketan 731235,India [2]Department of Physics and Mathematics Aoyama Gakuin University,Kanagawa 252-5258,Japan
出 处:《International Journal of Biomathematics》2018年第7期123-148,共26页生物数学学报(英文版)
摘 要:The stability of the predator-prey model subject to the Allee effect is an interesting topic in recent times.In this paper,we investigate the impact of weak Allee effect on the stability of a discrete-time predator-prey model with Holling type-IV functional response.The mathematical features of the proposed model are analyzed with the help of equilibrium analysis,stability analysis,and bifurcation theory.We provide sufficient conditions for the flip bifurcation by considering Allee parameter as the bifurcation parameter.We observe that the model becomes stable from chaotic dynamics as the Allee parameter increases.Further,we observe bi-stability behavior of the model between only prey existence equilibrium and the coexistence equilibrium.Our analytical findings are illustrated through numerical simulations.
关 键 词:Chaos control Allee effect FLIP BIFURCATION bi-stability LYAPUNOV EXPONENT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222