检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓芳明 温开云 何怡刚 李兵[3] 汪涛[3] 吴翔 DENG Fangming;WEN Kaiyun;HE Yigang;LI Bing;WANG Tao;WU Xiang(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,Jiangxi Province,China;School of Electrical Engineering,Wuhan University,Wuhan 430072,Hubei Province,China;School of Electrical Engineering andAutomation,Hefei University of Technology,Hefei 230009,Anhui Province,China)
机构地区:[1]华东交通大学电气与自动化工程学院,江西省南昌市330013 [2]武汉大学电气工程学院,湖北省武汉市430072 [3]合肥工业大学电气与自动化工程学院,安徽省合肥市230009
出 处:《中国电机工程学报》2018年第24期7183-7193,共11页Proceedings of the CSEE
摘 要:该文提出了一种基于无源射频识别(radio frequency identification,RFID)振动传感标签及量子粒子群算法(quantum-behaved particle swarm optimization,QPSO)--相关向量机(relevance vector machine,RVM)的变压器绕组故障在线诊断技术。首先设计一种双天线无源RFID振动传感器标签结构,可以稳定工作在无源模式下。针对变压器绕组振动信号包含大量噪声的特点,利用奇异熵对原始信号进行降噪处理,并提出基于QPSO优化的RVM的故障诊断算法。测试结果表明:该文所设计的标签能够可靠地完成变压器绕组振动信号采集以及传输,QPSO-RVM算法能够快速而准确地定位出故障所在,与国内外现有监测技术相比,具有低成本、功耗低,故障定位迅速准确的优点。An on-line fault diagnosis for transformer windings based on RFID sensor tags and quantum-behaved particle swarm optimization (QPSO)-relevance vector machine (RVM)was proposed in this paper.Firstly,a double antenna radio frequency identification (RFID)sensor tag was designed to detect vibration signals,which could work on passive mode. Considering the large amount of noise components in winding vibration signals,the singular entropy was employed to de-noise the raw signal.The RVM optimized by QPSO was used for fault diagnosis.Experimental results show that the exploited RFID sensor tag can reliably accumulate and transfer the winding vibration signal,and the proposed fault diagnosis approach has merit of accuracy and rapidity.Compared with existing fault diagnosis approaches,the proposed approach has advantages of low cost,low power consumption and can locate the faulty winding quickly and accurately.
关 键 词:变压器绕组 射频识别 故障诊断 奇异熵 相关向量机 量子粒子群算法
分 类 号:TM75[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30