检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王立梅[1] 李金凤[1] 张亚峰 WANG Li-mei;LI Jin-feng;ZHANG Ya-feng(Mudanjiang Normal College,College of Computer and Information Technology,Heilongjiang 157011)
机构地区:[1]牡丹江师范学院,黑龙江157011
出 处:《中国电子科学研究院学报》2018年第6期690-694,共5页Journal of China Academy of Electronics and Information Technology
基 金:黑龙江省教育厅科研项目(1353MSYYB006)
摘 要:本文提出了联合多层次散射区域的合成孔径雷达(SAR)目标识别方法。该方法首先提取原始SAR图像的多层次散射区域,这些散射区域细致地描述了目标散射中心的分布规律和相对强弱。为了充分挖掘各层次散射区域对目标识别的鉴别力,利用联合稀疏表示分类器对多层次散射区域进行联合识别。联合稀疏表示可以有效利用不同层次散射区域的内在关联性,因此可以进一步提高目标识别的性能。采用MSTAR数据集进行了目标识别实验,验证了方法的有效性。This paper proposes a SAR (synthetic aperture radar)target recognition method based on joint sparse representation of multi-level scattering areas.The multi-level scattering areas are first extracted from the original SAR images,which describe the distribution and relative intensities of scattering centers.In order to exploit discriminability of individual scattering areas,the joint spare representation-based classification is employed to classify the multi-level scattering areas.The joint spare representation can effectively exploit the inner correlations among individual scattering areas thus improving the recognition performance.To validate the effeteness of the proposed method,experiments are conducted on public MSTAR (moving and stationary target acquisition and recognition)dataset.
分 类 号:TP753[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49