Insight into the distribution of metallic elements in membrane bioreactor: Influence of operational temperature and role of extracellular polymeric substances  被引量:5

Insight into the distribution of metallic elements in membrane bioreactor: Influence of operational temperature and role of extracellular polymeric substances

在线阅读下载全文

作  者:He Wang Xiufen Li Xinhua Wang Yueping Ren 

机构地区:[1]Laboratory of Environmental Biotechnology,School of Environmental and Civil Engineering,Jiangnan University [2]Jiangsu Key Laboratory of Anaerobic Biotechnology

出  处:《Journal of Environmental Sciences》2019年第2期111-120,共10页环境科学学报(英文版)

基  金:supported by the National Key Research and Development Program (No.2016YFC0400707);the Research and Innovation Project for Postgraduates of Higher Education Institutions of Jiangsu Province (Nos.KYLX16_0812 and SJZZ16_0216)

摘  要:The distribution of metallic elements in a submerged membrane bioreactor(MBR) was revealed at different temperatures using inductively coupled plasma-optical emission spectrometry(ICP-OES), and the role of extracellular polymeric substances(EPS) was probed by integrating scanning electron microscopy(SEM) with confocal laser scanning microscopy(CLSM) over long-term operation. More metallic elements in the influent were captured by suspended sludge and built up in the fouling layer at lower temperature. The concentration of metallic elements in the effluent was 5.60 mg/L at 10°C operational temperature, far lower than that in the influent(51.35 mg/L). The total contents of metallic elements in suspended sludge and the membrane fouling layer increased to 40.20 and 52.19 mg/g at 10°C compared to 35.14 and 32.45 mg/g at 30°C, and were dominated by the organically bound fraction. The EPS contents in suspended sludge and membrane fouling layer sharply increased to 37.88 and 101.51 mg/g at 10°C, compared to 16.87 and 30.03 mg/g at 30°C. The increase in EPS content at lower temperature was responsible for the deposition of more metallic ions. The strong bridging between EPS and metallic elements at lower temperature enhanced the compactness of the fouling layer and further decreased membrane flux. This was helpful for understanding the mechanism of membrane fouling at different operational temperatures and the role of EPS, and also of significance for the design of cleaning strategies for fouled membranes after long-term operation.The distribution of metallic elements in a submerged membrane bioreactor(MBR) was revealed at different temperatures using inductively coupled plasma-optical emission spectrometry(ICP-OES), and the role of extracellular polymeric substances(EPS) was probed by integrating scanning electron microscopy(SEM) with confocal laser scanning microscopy(CLSM) over long-term operation. More metallic elements in the influent were captured by suspended sludge and built up in the fouling layer at lower temperature. The concentration of metallic elements in the effluent was 5.60 mg/L at 10°C operational temperature, far lower than that in the influent(51.35 mg/L). The total contents of metallic elements in suspended sludge and the membrane fouling layer increased to 40.20 and 52.19 mg/g at 10°C compared to 35.14 and 32.45 mg/g at 30°C, and were dominated by the organically bound fraction. The EPS contents in suspended sludge and membrane fouling layer sharply increased to 37.88 and 101.51 mg/g at 10°C, compared to 16.87 and 30.03 mg/g at 30°C. The increase in EPS content at lower temperature was responsible for the deposition of more metallic ions. The strong bridging between EPS and metallic elements at lower temperature enhanced the compactness of the fouling layer and further decreased membrane flux. This was helpful for understanding the mechanism of membrane fouling at different operational temperatures and the role of EPS, and also of significance for the design of cleaning strategies for fouled membranes after long-term operation.

关 键 词:Membrane BIOREACTOR Metallic elements EXTRACELLULAR POLYMERIC substances 

分 类 号:X[环境科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象