Boosting the Information Transfer Rate of an SSVEP-BCI System Using Maximal-Phase-Locking Value and Minimal-Distance Spatial Filter Banks  被引量:4

Boosting the Information Transfer Rate of an SSVEP-BCI System Using Maximal-Phase-Locking Value and Minimal-Distance Spatial Filter Banks

在线阅读下载全文

作  者:Ke Lin Shangkai Gao Xiaorong Gao 

机构地区:[1]the Department of Biomedical Engineering, Tsinghua University

出  处:《Tsinghua Science and Technology》2019年第3期262-270,共9页清华大学学报(自然科学版(英文版)

基  金:supported by the National Natural Science Foundation of China (Nos. 61431007 and 91320202)

摘  要:For Brain-Computer Interface(BCI) systems, improving the Information Transfer Rate(ITR) is a very critical issue. This study focuses on a Steady-State Visually Evoked Potential(SSVEP)-based BCI because of its advantage of high ITR. Unsupervised Canonical Correlation Analysis(CCA)-based method has been widely employed because of its high efficiency and easy implementation. In a recent study, an ensemble-CCA method based on individual training data was proposed and achieved an excellent performance with ITR of 267 bit/min.A 40-target SSVEP-BCI speller was investigated in this study, using an integration of Minimal-Distance(MD) and Maximal-Phase-locking value(MP) approaches. In the MD approach, a spatial filter is developed to minimize the distance between the training data and the reference sine signal, and in this study, two different types of distance were compared. In the MP approach, a spatial filter is developed to maximize the Phase-Locking Value(PLV)between the training calibration data and the reference sine signal. In addition to the fundamental frequency of stimulation, the harmonics were used to train MD and MP spatial filters, which formed spatial filter banks. The test data epoch was multiplied by the MP and MD spatial filter banks, and the distances and PLVs were extracted as features for recognition. Across 12 subjects with a 0.4 s-data length, the proposed method realized an average classification accuracy and ITR of 93% and 307 bit/min, respectively, which is significantly higher than the current state-of-the-art method. To the best of our knowledge, these results suggest that the proposed method has achieved the highest ITR in SSVEP-BCI studies.For Brain-Computer Interface(BCI) systems, improving the Information Transfer Rate(ITR) is a very critical issue. This study focuses on a Steady-State Visually Evoked Potential(SSVEP)-based BCI because of its advantage of high ITR. Unsupervised Canonical Correlation Analysis(CCA)-based method has been widely employed because of its high efficiency and easy implementation. In a recent study, an ensemble-CCA method based on individual training data was proposed and achieved an excellent performance with ITR of 267 bit/min.A 40-target SSVEP-BCI speller was investigated in this study, using an integration of Minimal-Distance(MD) and Maximal-Phase-locking value(MP) approaches. In the MD approach, a spatial filter is developed to minimize the distance between the training data and the reference sine signal, and in this study, two different types of distance were compared. In the MP approach, a spatial filter is developed to maximize the Phase-Locking Value(PLV)between the training calibration data and the reference sine signal. In addition to the fundamental frequency of stimulation, the harmonics were used to train MD and MP spatial filters, which formed spatial filter banks. The test data epoch was multiplied by the MP and MD spatial filter banks, and the distances and PLVs were extracted as features for recognition. Across 12 subjects with a 0.4 s-data length, the proposed method realized an average classification accuracy and ITR of 93% and 307 bit/min, respectively, which is significantly higher than the current state-of-the-art method. To the best of our knowledge, these results suggest that the proposed method has achieved the highest ITR in SSVEP-BCI studies.

关 键 词:SSVEP-BCI Information Transfer Rate (ITR) SPATIAL filter DISTANCE PHASE-LOCKING Value (PLV) 

分 类 号:N[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象