检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴桂宝 沈瑜[2] 张文帅[2] 廖莎莎 王琦琦 李京[1,2] WU Gui-bao;SHEN Yu;ZHANG Wen-shuai;LIAO Sha-sha;WANG Qi-qi;LI Jing(University of Science & Technology of China,Hefei 230026,China;Supercomputing Center of University of Science & Technology China,Hefei 230026,China)
机构地区:[1]中国科学技术大学计算机科学与技术学院,合肥230026 [2]中国科学技术大学超级计算中心,合肥230026
出 处:《小型微型计算机系统》2019年第1期6-12,共7页Journal of Chinese Computer Systems
基 金:国家重点研究和发展专项项目(2016YFB0201402)资助
摘 要:高性能计算集群通常使用先来先服务等传统的作业调度方法,它具有良好的公平性,并且实现简单,但容易产生闲置的资源碎片.针对上述问题,一种的策略是使用回填,利用一些短时间小作业来填补系统等待期间的空闲资源碎片.但好的回填方法通常需要知道作业预期的运行时间,而用户或者不愿意提供作业预期运行时间,或者倾向于提供比实际运行时间更长的预期时间以避免作业被系统终止,因此我们有必要自行预测作业的运行时间. VASP是国内应用最普及的高性能计算应用软件之一,本文通过分析VASP作业特性,解析并抽取相应的作业特征集,提出一种基于贝叶斯的二次预测模型IRPA,对VASP作业进行运行时长的预测,最后进一步提出基于径向基网络分支及贝叶斯分类的混合预测模型BRBF,并且利用我校TC4600平台上的VASP作业数据集进行验证.实验结果和其他几个基本方法进行对比,表明IRPA以及BRBF的有效性以及在粗粒度下具有的较高预测准确率.The most common scheduling strategy used on high performance computing systems is First Come First Server( FCFS). The FCFS strategy has good fairness and is simple and practical,but it may generate idle resource fragments. The backfilling algorithm is one of the wildly used method to improve the utility of the system. It let some short runtime small jobs run ahead to fill the blank resources which are waiting for large jobs. The backfilling algorithm depend on the knowledge of jobs runtime before they really run.However,users may not willing to provide their jobs runtime or the provided runtime are much longer than actually runtime to avoid their jobs be terminated by the system. Therefore,it is necessary to predict the jobs runtime based on the jobs properties. The Vienna Ab initio Simulation Package( VASP) is one of the most popular high performance computing applications. We extracted the corresponding job attribute sets by analyzing the characteristics of VASP,and presented a job runtime prediction method based on Bayesian model: IRPA,which is used to predict the running time of VASP jobs. We also proposed a hybrid method based on radial basis network and Bayesian model: BRBF. These two models are verified the two models by using the history data of VASP jobs on TC4600 platform in supercomputer center of University of Science and Technology of China( USTC). Compared to some other classical methods,our two methods showthe better effectiveness and higher prediction accuracy at a coarse granularity.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.149.79