基于方形邻域和裁剪因子的离群点检测方法  被引量:7

Square Neighborhood and Pruning Factor Based Outlier Detection Algorithm

在线阅读下载全文

作  者:涂晓敏 石鸿雁[1] TU Xiao-min;SHI Hong-yan(Shenyang University of Technology,Shenyang 110870,China)

机构地区:[1]沈阳工业大学,沈阳110870

出  处:《小型微型计算机系统》2019年第1期186-189,共4页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61074005)资助

摘  要:针对改进的局部稀疏系数(Enhanced Local Sparsity Coefficient,简称ELSC)算法在邻域查询过程中存在的不足,以及为了提高算法查准率,提出了一种基于方形邻域和裁剪因子的离群点检测算法.首先采用方形邻域,吸取网格算法的思想,以扩张的方形邻域代替网格分割,快速地排除聚类点,避免了网格算法的"维灾"问题.其次为了提高算法的精确度,引入裁剪因子的概念对候选离群点集进行精选.最后通过新定义的局部稀疏指数确定离群点.试验测试表明,该算法的执行效率与检测精度均优于ELSC算法.In viewof the shortcomings of enhanced local sparsity coefficient( Enhanced Local Sparsity Coefficient,called ELSC) algorithm in the process of neighborhood query,to improve the accuracy of the algorithm,this paper proposed a algorithm which square neighborhood and pruning factor based outlier detection algorithm. First of all,algorithm applied to the square neighborhood,which absorbs the idea of grid based algorithm,eliminates the normal points with dense square neighborhood rapidly;the algorithm partitioned dataset with square neighborhood,not with spatial girds,and overcomes the"dimension disaster"based on grid algorithm. Secondly,the identify accuracy could be improved within the novel pruning factor,which is used for the selection of candidate outlier points. In the end,the newly defined local sparse index could determine outlier data objects. Experimental result shows the algorithm is not only efficient in detection accuracy but also more effective than ELSC in the computation.

关 键 词:数据挖掘 离群点 方形邻域 裁剪因子 局部稀疏指数 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象