Learning to Generate Posters of Scientific Papers by Probabilistic Graphical Models  被引量:3

在线阅读下载全文

作  者:Yu-Ting Qiang Yan-Wei Fu Xiao Yu Yan-Wen Guo Zhi-Hua Zhou Leonid Sigal 

机构地区:[1]National Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210046,China [2]School of Data Science,Fudan University,Shanghai 200433,China [3]Disney Research Pittsburgh,Pittsburgh 15241,U.S.A.

出  处:《Journal of Computer Science & Technology》2019年第1期155-169,共15页计算机科学技术学报(英文版)

基  金:the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20150016;the National Natural Science Foundation of China under Grant Nos.61772257 and 61672279;the Fundamental Research Funds for the Central Universities of China under Grant No.020214380042.

摘  要:Researchers often summarize their work in the form of scientific posters.Posters provide a coherent and efficient way to convey core ideas expressed in scientific papers.Generating a good scientific poster,however,is a complex and time-consuming cognitive task,since such posters need to be readable,informative,and visually aesthetic.In this paper, for the first time,we study the challenging problem of learning to generate posters from scientific papers.To this end,a data-driven framework,which utilizes graphical models,is proposed.Specifically,given content to display,the key elements of a good poster,including attributes of each panel and arrangements of graphical elements,are learned and inferred from data.During the inference stage,the maximum a posterior (MAP)estimation framework is employed to incorporate some design principles.In order to bridge the gap between panel attributes and the composition within each panel,we also propose a recursive page splitting algorithm to generate the panel layout for a poster.To learn and validate our model,we collect and release a new benchmark dataset,called NJU-Fudan Paper-Poster dataset,which consists of scientific papers and corresponding posters with exhaustively labelled panels and attributes.Qualitative and quantitative results indicate the effectiveness of our approach.

关 键 词:GRAPHICAL design layout AUTOMATION PROBABILISTIC GRAPHICAL model 

分 类 号:TP[自动化与计算机技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象