多裂纹问题计算分析的本征COD边界积分方程方法  被引量:8

Analysis of Multicrack Problems With Eigen COD Boundary Integral Equations

在线阅读下载全文

作  者:郭钊[1] 郭子涛[1] 易玲艳 GUO Zhao;GUO Zitao;YI Lingyan(College of Civil Engineering and Urban Construction, Jiujiang University,Jiujiang ,Jiangxi 332005,P.R.China;College of Economics and Management,Jiujiang University, Jiujiang ,Jiangxi 332005,P.R.China)

机构地区:[1]九江学院土木工程与城市建设学院,江西九江332005 [2]九江学院经济与管理学院,江西九江332005

出  处:《应用数学和力学》2019年第2期200-209,共10页Applied Mathematics and Mechanics

基  金:国家自然科学基金(11662005);江西省青年科学基金(2016BAB211001)~~

摘  要:针对多裂纹问题,若采用常规的数值求解技术,计算效率较低.为实现多裂纹问题的大规模数值模拟,建立了本征裂纹张开位移(crack opening displacement,COD)边界积分方程及其迭代算法,并引入Eshelby矩阵的定义,将多裂纹分为近场裂纹和远场裂纹来处理裂纹间的相互影响.以采用常单元作为离散单元的快速多极边界元法为参照,对提出的计算模型和迭代算法进行了数值验证.结果表明,本征COD边界积分方程方法在处理多裂纹问题时取得较大的改进,其计算效率显著高于传统的边界元法和快速多极边界元法.For multicrack problems,the conventional numerical solution techniques are of lowefficiency.T o realize large-scale numerical simulation of multicrack problems,the eigen crack opening displacement(COD) boundary integral equations and the pertinent iteration algorithm were established.To deal with the interactions between cracks,the local Eshelby matrix was introduced.In this way,the superposition technique was employed with all cracks divided into 2 groups,i.e.the adjacent group and the far-field group,according to a non-dimensional radial distance of a crack to the current crack.In comparison to the fast multipole boundary element method with a constant element as the discrete element,the proposed computational model and the iteration algorithm were numerically verified.The numerical results show that,the model for the eigen COD boundary integral equations gets great improvement in dealing with multicrack problems,and its computation efficiency is significantly higher than those of the traditional boundary element method and the fast multipole boundary element method.

关 键 词:多裂纹问题 本征裂纹张开位移 边界积分方程 快速多极边界元法 数值模拟 

分 类 号:O341[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象